Threat Analysis of Recursive Inter-Network
Architecture Distributed Inter-process
Communication Facilities

Jeremiah Small, John Day, Lou Chitkushev
Computer Science Department
Boston University Metropolitan College
{jdsmall, day, ltc} @bu.edu

Abstract—In the book Patterns in Network Architecture: A Re-
turn to Fundamentals, a new approach to designing and building
networks based on the fundamental concepts of Interprocess
Communication (IPC) is discussed.[1] This model departs from
the traditional concept of a layered architecture in which each
layer has a distinct and different purpose, and instead uses
repeating layers of common functions optimized to a specific
range of bandwidth, QoS, and scale. From these design principles
an elegant architecture has been proposed called Recursive Inter-
Network Architecture (RINA).[2][6][7][8][9] Earlier papers have
discussed how the RINA design inherently resists some of the
security issues that plague the TCP/IP architecture.[3] In this
paper we will explore the security of RINA’s equivalent to a
network layer, a Distributed IPC Facility (DIF). A DIF is the basic
building block of RINA networks. We will examine the threat
model of the RINA API and Common Distributed Application
Protocol (CDAP) to show that a DIF is a securable container.

I. WHAT IS A DIF?

Recursive Inter-Network Architecture (RINA) networks
consist of layers of building blocks called distributed
interprocess-communication facilities or ”DIFs”. This paper
will endeavor to show that from and architectural perspective
RINA’s equivalent of a network layer, a DIF, is a securable
container. As a disclaimer, we note that the proceeding analysis
persumes that the host operating system on which the RINA
implementation is running has not been compromised. If
processes outside of the RINA implementation can read the
privileged memory of an IPC process, then all bets are off.

Each DIF consists of one or more IPC processes contain-
ing the following components: a Resource Information Base
(RIB), IPC Management Tasks (Enrollment, Routing, Direc-
tory, Resource Allocation, Security Management), Relaying
and Multiplexing Task (RMT), a Service Data Unit (SDU) De-
limiter task, an SDU protection task, and the Error and Flow-
Control Protocol (EFCP) machine. Each IPC process may also
have one or more Application Processes (AP) running “above”
the DIF that will rely on the DIF to communicate with other
APs that have access to the same DIF. The IPC Process itself
is an AP and relies on DIFs “below” it for communication
and so on down to the physical transmission medium.

No security audit would be complete without discussing the
assets involved. In this case we are discussing a processing
system. Assets include: User data, Management Data, and

computing resources. Each of these may sustain attacks against
them in the form of interruption, interception, modification,
or fabrication. User data is any data which is stored on or
transmitted to or from a computing system, or that can be
inferred from such data. Examples include: documents, media
files, source code, or account balances among others. Man-
agement data is a special subset of user data that pertains to
the operation of the computing system or network. Examples
include: real-time performance data, names, addresses, cipher
keys, and policy data among others. Computing resources
refers to the computing systems themselves. Blocking access
to, remotely controlling, and or electronically or physically
disabling these resources are examples of attacks against them.

When exchanging messages, a DIF is similar to a TCP/IP
layer in that the protocol machine on one processing system
(in this case an IPC process) communicates only with protocol
machines in the same layer (DIF), usually on other processing
systems. For example in TCP/IP, TCP protocol machines
“talk” to other TCP protocol machines on other processing
systems, but not to IP protocol machines. Similarly IP only
“talks” to IP. This aspect is the same in RINA in that IPC
processes in a DIF only communicate with other IPC process
in the same DIF and only within the same processing system.
The messages that get passed between IPC processes are called
Protocol Data Units (PDUs), these consist of Protocol Control
Information (PCI)! and a payload which RINA calls an SDU.
An SDU may contain one or more complete PDUs or a
fragment of a PDU from the layer above. Operationally, this
distinction may not matter much because of RINA’s inherent
recursiveness, however it is useful to make a distinction when
considering the security between layers. For the remainder of
this paper we will use the term PDU to refer to an (n+1)-DIF
SDU with n-DIF PCI.

II. Is A DIF A SECURABLE CONTAINER?
A. What is a securable container?

To answer the question: Is a DIF a Securable Container?
we need to first define what a Securable Container is. The
following definitions are from the New Oxford American
Dictionary. [4]

I'sometime referred to as header and trailer

Secure:
not subject to threat; certain to remain or continue
safe and unharmed; protected against attack or other
criminal activity

Securable:
Able to be secured.

Container:
an object that can be used to hold or transport
something

Attack:
take aggressive action against

Threat:
a person or thing likely to cause damage or danger

The reader should note that in our context, ~attack’™ can be
either active or passive. An example of an active attack might
be attempting to gain unauthorized access to the container.
An example of a passive attack might be eavesdropping on a
conversation.

From these definitions and our context we can derive the
following definition.

Securable Container:
A structure used to hold or transport something that
can be made to be not subject to threat.

In order to test if this definition can be applied to a DIF we
will need to answer the following additional questions:

1) What does it mean to attack a DIF?
2) What information would an attacker need in order to
mount an attack on a DIF?

3) How could an attacker get the required information to
attack a DIF?

III. WHAT DOES IT MEAN TO ATTACK A DIF?

A DIF is a logical container that holds information about
a collection of network nodes and facilitates communication
between them. As we have already established, to attack
something is to take aggressive action against it. This implies
that to attack a DIF one would have to attack the data stored
on one or more of the nodes, the communication between
the nodes, or else the operation of the nodes themselves.
Attacking could also include joining the DIF with a false
positive authentication or without a proper authentication at
all. We must also consider the varying scope with which a
DIF could be attacked. The target of an attack could be a
specific node within the DIF, any single node within the DIF,
or else the collection of all the nodes in the DIF.

A. Traffic Attacks

In network communication, there are 4 primary types of
attacks:[10]

Interruption:

Prevent PDUs from reaching their intended destina-
tion

Interception:
Read PDUs as they traverse the network without
alerting the source or destination
Fabrication:
Generate and send fake PDUs to the destination that
look like they came from a different source
Modification:
Changing the content of a PDU while in transit
between the sender and receiver

B. Attacks on DIF Members

Now let us consider attacks on the DIF members them-
selves. Each DIF member stores the following information in
its RIB. Any or all of these could be the target of an attack.
a) Forwarding Table Data
b) AP Synonyms
c¢) AP Addresses
d) Whatevercast names/synonyms
e) Inter-DIF Directory entries
/) List of DIF Members
g) Key material
h) Address Allotments
i) Flows
J) Authentication Credentials
k) Authorization Data (Access Control Rules)

) Logs
m) Performance Metrics
n) Policy Data

1) Attacks on a Specific DIF Member: Let us consider the
possible attacks against a specific DIF member. An attacker
may wish to take the node off-line or otherwise disable it
completely. They may wish to masquerade as this node in
order to send fabricated traffic or use it to elevate their
privilege by using a more trusted node than the one they have
direct access to. They may simply wish to intercept the traffic
of this specific node to eavesdrop on conversations of a specific
user or set of users. They may wish to gain access to the
specific system in order to gather information or execute their
own code. They may also wish to disrupt communication by
affecting the network’s ability to provide the requested Quality
of Service (QoS).

Motivation for attacking a specific DIF member may be
to gather specific targeted information, execute a Denial-of-
service (DoS) attack on a specific service, or compromise
the system to use as a stage for further attacks among other
reasons.

2) Attacks on Any DIF Member: Similar to an attack on a
specific DIF member, an attacker may wish to target a DIF
by attempting to attack any of its members. It could do this
by intercepting any data being transmitted, or attempting to
interrupt any random target.

An attacker may wish to attack any member indiscriminately
in order to gain additional information about the DIF and its
members which in turn may enable them to launch a more
targeted attack. If the attacker can locate a less protected DIF
member, it may be able to use that node as a staging ground
from within the DIF to attack other members that may be
better protected from non-member nodes.

3) Attacks on All DIF Members: Finally we come to attacks
on the entire DIF, that is attacks against all of the members
of the DIF at the same time?. In this case, an attacker may
attempt to corrupt routing and forwarding data to affect data
flow within the DIF. They may wish to disrupt or jam all
traffic within the DIF. They may also wish to intercept and
possibly record all traffic flowing across a DIF. They may
also be attempting to use the DIF mechanisms to take down
all of the member nodes causing a DIF-wide DoS.

Motivation for this may be to take out an entire subnet.
Depending on the confidentiality policies being employed,
an attacker may attempt to use the traffic within the DIF to
compromise nodes in a DIF above it.

C. Other General Attacks

There are a few attacks against the DIF as a whole.
These include escalation of privilege on access to data in the
distributed RIB whether it be from a DIF member or non-
DIF member. Finally gaining unauthorized access to the DIF
(e.g. joining the DIF) including false positive authentication
or circumventing authentication completely.

Motivation for these attacks would be to gather critical
information such as key material or other member data to
aid in more targeted attacks or to gain access to user data
transmitted by this DIF.

Next we will need to discuss what information an attacker
may need to perpetrate any of the aforementioned attacks.

IV. WHAT INFORMATION DOES AN ATTACKER NEED TO
ATTACK A DIF?

In this section we will discuss what information would be
needed in order to launch one of the attacks just discussed.
We will break this down into each of the attack scopes. In
general, the following information will be needed:

a) DIF Name

b) specific member name/address

¢) authentication credentials (even if these are null)
d) key material (for HMAC, cipher, etc)

e) SDU protection policy

A. Specific DIF Member

In order to launch any of the attacks discussed in section
III-B1, the attacker must first be able to send network traffic
to the target machine.

In order to intercept, modify, or fabricate network traffic
to/from a specific DIF member, one would have to be able to
identify the member in some way. This means that an identifier
for the DIF itself as well as the node/AP in question would
have to be known to the attacker’. An alternate way to get
PDUs to a specific target is via an intermediate hop. In this
case, the attacker would have to know what route PDUs will

take through the DIF. However, before one could intercept or
2or over time
3This also implies that the attacker must know the name space from
whence these names come. Unlike their counterparts in IPv4 and IPv6, RINA
addresses in different DIFs are taken from different name spaces

modify a PDU, the attacker would have to put themselves (or a
proxy) along the route connecting source and destination APs.
This requires that they know at least one, but likely multiple
routes between the source and destination. To interrupt the
traffic of one specific DIF member without affecting the traffic
of other nodes, the attacker would have to identify the member.
If the attacker is not concerned with interrupting traffic of other
members, then less information may be needed.

In order to attack traffic between specific APs, the attacker
would also have to know or be able to predict the connection
identifiers of the traffic in question. PNA tells us in chapter
7 that “connection identifiers will commonly be formed by
the concatenation of the port-ids associated with [a] flow
by the source and destination [Error flow control protocol
machines]”’[1]. Given this, if an attacker only wishes to capture
traffic from one or more instances of the AP under attack,
then they will have to discover at least the set of local port
ids being used for that AP. If the attacker is interested in the
traffic between two specific nodes, then they will also have to
discover the port id being used for the other AP by the remote
IPC process.

In addition to the network identifiers, the attacker will have
to know (or be able to otherwise circumvent) the authentication
credentials*, key material, and SDU protection policy to be
able to decode the traffic.

B. Any DIF Member

The information required to attack any random DIF member
is a degenerate case of attacking a specific member. Like the
specific DIF case, attacking any random DIF member will
require discovering the identifier or address of a member, but
in this case an anycast or broadcast synonym may be sufficient.

C. All DIF Members

Direct attacks against DIF traffic in the same manner as
described in the preceding sections is also potentially pos-
sible using broadcast or multicast synonyms. Section III-B3
describes an attack against the forwarding tables, this implies
being able to either compromise a host and RIB demon, or
else intercept and modify or directly fabricate routing update
messages.

D. DIF as a Whole

To intercept all traffic passing through the DIF, an attacker
would require access to a number of DIF nodes sufficient to
see all PDUs. Similarly, to disrupt all traffic in the DIF, an
attacker would need access to enough DIF nodes such that all
paths through the DIF pass through those attacker controlled
systems.5

In order to join the DIF, a rogue AP would have to discover
access credentials or otherwise circumvent the authentication
sequence.

4Even if they are simply null
5This assumes the attacker also has sufficient computing resources to flood
those paths.

V. HOW COULD AN ATTACKER GET THE REQUIRED
INFORMATION TO ATTACK A DIF?

In this section we will discuss how an attacker might go
about obtaining the information required to attack the various
aspects of a DIF as described in the preceeding sections. We
will be examing the RINA API calls as well as the Common
Distributed Application Protocol (CDAP).

A. RINA API

In order to wunderstand what information may be
available to the attacker we will examine the data flow
of the RINA API. The RINA API has 5 primitives:
Allocate_Request, Allocate_Response, Send,
Receive, and De-Allocate. We will first examine these
primitives from the perspective of the servicer and follow up
by examining the perspective of the caller. Another way to
look at this is to say that for a given N-DIF IPC Process, there
are two trust boundaries at the API level. One between the
N-DIF IPC Process and the one in the DIF above (N+1)-DIF®,
and another between the N-DIF IPC Process and the one
below it (N-1)-DIF’. See Figure 1.

1.Allocate_request()
2.Allocate_response()

6.Allocate_request()
. 7.Allocate_response()

3. Send()
4. Receive()
5. Deallocate()

O Process

——> DataFlow : 8.

Send()
H 9. Receive()
Y 10. Deallocate()

...... Trust Boundary

Fig. 1. RINA API Data-flow

Allocate_Request: The Allocate_Request API is
used by an AP when it wants to initiate an exchange of SDUs
with another AP. The call includes the Destination application
name to allocate a flow with, the source the application
identifier of the application making the request (e.g. itself),
the requested quality of service parameter, and the access
credentials to use to access the destination AP. In response,
the API provides a port-id, similar to a file handle, to be used
to refer to the established flow on future calls, and a reason
code and message indicating success or failure

Allocate_Response: The Allocate_Response API
call is used to respond to a request for allocation. Input to the
call is as follows. The destination that the AP is responding
to. The available QoS that will be used and the port that was
provided in the corresponding Allocate_Request. The
response is simply Reason code / message.

6can also be an Application Process
7can also be the physical medium

Send: The Send API is used to send an SDU to the
remote end of the allocated flow. The call includes the port-id
that identifies the flow to send the SDU on, and the buffer
containing the SDU to send. The response to this is a reason
code indicating success or failure.

Receive: The Receive API is used to read SDUs sent
from the remote end of the flow. The call includes the port-
id indicating which flow to read from and a buffer to write
the SDU into. The output of this call is the data written to
the specified buffer and a reason code indicating success for
failure.

De-Allocate: The Deallocate API is used to indicate
that all resources associated with the port-ids should be
de-allocated. (The state associated with the connection will
disappear after 2 or 3 delta-ts.) The single parameter passed
to this API is the port-id indicating which resources should be
de-allocated. In response is a reason code indicating success
or failure.

1) (N+1)-DIF = N-DIF: Let us now examine the 5 API
calls across the trust boundary between caller and servicer
where the caller is a layer above the servicer. We will assume
some level of distrust of the (N+1)-DIF.

Data Flow 1: Allocate_Request: In order to service this
call, the IPC Process servicing this request will have to make
use of information an attacker is interested in. This includes
the DIF name, the address of the destination, the DIF’s PDU
protection policy, and any key material necessary to meet the
PDU protection policy. In general it is not difficult to keep this
information from the calling AP, since all that is required to
be returned is a port-id. The IPC Process should take care not
to leak any of the aforementioned information via the reason
code (e.g. including the data in overly helpful error messages).
For example an IPC process should take care not to offer up
any hints as to the DIF namespace when the caller passes an
invalid destination AP name. On the flip side, the IPC process
should take care to validate the incoming Allocate_Request
calls against malformed arguments. For example, the IPC
process should not allow a caller to pass a source application
identifier other than its actual identifier. The QoS parameters
are not much of a threat, and require only basic input validation
(e.g. bounds checking, invalid character sequences, etc.). The
access credentials will be validated by the destination AP and
so only basic local validation is required.

Data Flow 2: Allocate_Response: When this is coming
from the DIF above, it should correspond to an earlier request.
That means that servicing IPC process should keep track of
the source and port-id of Allocate_Requests it has sent to
a given AP and only accept Allocate_Response calls with
corresponding destination and port-id; all others should simply
be discarded. The QoS parameters require only basic input
validation. The IPC process should take care not to leak
information about the DIF (DIF Name?®, addresses, etc.) via
the reason code when responding with an error condition.

Data Flow 3: Send: The send API is only valid for flows
that are established, so the N-DIF IPC process should validate

81ncluded for completeness. The DIF Name is easily known, but an attacker
must still know it to launch an attack.

that the specified port-id is associated with the calling AP. In
addition input validation should be done on the SDU buffer.
As with earlier calls, the IPC process should be careful not to
divulge any information about the DIF when responding with
an error condition.

Data Flow 4: Receive: Like the send API, the receive
API is also only valid for established flows. The N-DIF IPC
process should validate the specified port-id is associated with
the calling AP before filling the specified SDU buffer with
data from the flow and validate that the incoming SDU will
fit into the indicated buffer. The IPC process should also take
care not to divulge any DIF-sensitive data when responding to
error conditions.

Data Flow 5: De-Allocate: As we discussed with Send
and Receive, the IPC Process should validate that the port-id
provided corresponds to a flow that is allocated to the calling
AP. Also, like the preceding APIs, the IPC Process should take
care not to divulge any DIF-sensitive information to the caller
via error messages.

2) N-DIF — (N-1)-DIF: Now we will consider the trust
boundary between N-DIF and (N-1)-DIF assuming some level
of distrust of (N-1)-DIF.

Data Flow 6: Allocate_Request: When making the call to
Allocate_Request, the N-DIF is divulging the destination AP
name, its own identifier, the quality of service it thinks the
destination can provide, and access credentials. The AP name
is not particularly useful to the attacker other than perhaps to
track what APs the source wants to connect to. The source
application name may be useful to an attacker wishing to
impersonate the source. The quality of service parameters may
be useful to an attacker since the level of service may indicate
what type of bandwidth is available between the source and
destination. A high amount of bandwidth may indicate a high
profile target. A low amount of bandwidth may indicate an
easier target of a DoS attack.

The access credentials are quite useful to an attacker espe-
cially if they are unprotected. Either way, some care must
be taken to ensure that an attacker can neither learn the
cleartext credentials or use them in a replay attack against
the destination AP. Some care should be given to the number
of retries that are attempted; if the authentication scheme in
use relies on a sequence, then an attacker may use failed
authentications to attempt to learn enough of a sequence to
establish a seed.

The port-id is provided by the lower level DIF and is of
little interest. The N-DIF IPC process or AP should take care
to properly handle requests coming from a port-id that was
already allocated prior to the new request.

Data Flow 7: Allocate_Response: In this case, the IPC
process should take care to validate the access credentials that
came along with the corresponding Allocate_Request before
making any response. Since we are assuming that the (N-
1)-DIF is not fully trusted, then we must consider that the
lower level DIF could attempt a Man-in-the-Middle attack. The
response data should be protected in some way otherwise after
passing along the access credentials the (N-1) IPC Process
could use the response to insert itself into the flow and
send SDUs to the accepting AP when the AP thinks it is

talking to the original requester. If the Allocate_Request is not
authenticated, then an attacker could learn the available QoS
by sending repeated requests with different levels of QoS. The
port-id is supplied by the lower level DIF and therefore is of
little interest from a security perspective.

Data Flow 8: Send: There are only two pieces of data of
interest from the API perspective when calling send: port-id
and the SDU buffer. The port-id is supplied by the (N-1)-
DIF and is therefore uninteresting from a security perspective
in this case. The SDU on the other hand is potentially very
valuable to an attacker. Care should be taken to protect the
SDU with encryption and integrity checking depending on
the level of security required. If encryption is employed,
care should be taken to never pass an SDU buffer that has
previously contained clear text. If this is unavoidable due to
resource limitations, care should be taken to zero out the clear
text remaining in the buffer before passing the data via the
send APL If SDU protection is not used, the N-DIF process
should assume that the contents of any SDUs sent are known
to any AP in the DIF through which the SDU passes.

Data Flow 9: Receive: There are three pieces of infor-
mation to consider for the receive call: the port-id, the buffer
reference, and the data that gets placed into the buffer. The
port-id is a value that is provided by the lower level DIF
and as with earlier calls is not very interesting security-wise.
Care should be taken by the N-DIF process that the buffer
provided into which data should be written does not contain
any clear text from earlier messages. Once the data has been
received, validation of the buffer and integrity checks on the
decrypted SDU should be done. If either fails, the SDU should
be discarded.

Data Flow 10: De-Allocate: The deallocate API may
seem uninteresting from a security perspective at first, but if
the (N-1)-DIF is not trusted and it is critical to the N-DIF
process that the flow actually be deallocated, then the N-DIF
process should indicate to the AP on the other side of the flow,
within the application protocol, that it will deallocate before
making the actual deallocate API call. This will help to ensure
that the (N-1)-DIF IPC Process cannot fool the AP at the other
end of the flow into continuing the connection’.

B. CDAP

Thus far in our examination of how an attacker might obtain
enough information to launch an attack against a DIF, we have
been looking at the boundary between DIFs which occurs
on a specific host. We must now turn our attention to data
that gets exchanged between hosts!?. The protocol used by
DIF members to coordinate operation of the DIF is called the
Common Distributed Application Protocol (CDAP).[5] CDAP
has 9 actions: Connect, Release, Create, Delete, Read, Cancel
Read, Write, Start, and Stop. Each action has a request and
response message for a total of 18 PDUs that can be forwarded
among DIF members. Each message contains a subset of a
possible 23 fields (See figure 3).

This is likely to only be an issue if SDU protection is not being employed.
10The information may also apply to Different APs communicating via an
IPC process on the same host.

Initiating

Responding

Process Process

M_<O0P>_R
Connect
Release
Create
O Process Delete
— DataFlow <OP> | Read
CancelRead
------ Trust Boundary Write
Start
Stop

Fig. 2. CDAP Data-flow

The following descriptions are from the CDAP reference
specification.[5]

Connect
Initiate a connection from a source application to a
destination application.
Release
Orderly close of a connection.
Create
Create an application object
Delete
Delete a specified application object
Read
Read the value of a specified application object
Cancel Read
Cancel a prior read issued using Read for which a
value has not been completely returned
Write
Write a specified value to a specified application

object

Start
Start the operation of a specified application ob-
ject, used when object has operational and non-
operational states.

Stop

Stop the operation of a specified application object,
used when then object has operational and non-
operational states

The primary trust boundary exists between the local host
and the rest of the world.!! Let us now consider each of the
messages as they cross the boundary from either direction.
(See figure 2)

1) World = Local Host: First we will examine the security
aspects of each message from the perspective of an IPC
process within the trust boundary on the local host. When
processing each of the requests discussed below, a local IPC

ITA second trust boundary is between the local host and members of the
DIF. A third trust boundary is between the local host and non-DIF members.
A fourth boundary may be considered also if some members of the DIF are
trusted more than others, but we will leave these as topics for further study.

process should do an authorization check on the requester
before offering up any data.

Data flow 1: Connect and Connect_R: When a connect
message comes in, the servicer should take care to validate
the incoming source and destination identifiers. It should
also authenticate the sender if the authentication fields are
populated and the authentication policy specifies it. When
sending a response the IPC process should take care not to
leak any information that may allow the attacker to build
up knowledge of the DIF’s namespace. If the IPC process
is handing its authentication directly it should consider using
standard best practices for preventing attacks such as not
accepting further connection requests after some number of
specified failed authentications.

Data flow 2: Release and Release_R: The primary con-
cern when processing this message would be to verify that the
release request is actually coming from the DIF process for
which the request is being made. The message itself does not
contain enough information to verify this other than comparing
it against a table of open connections. CDAP will have to rely
on lower-level mechanisms such as overall SDU protection
or a session identifier established external to CDAP in order
to protect against errant or fabricated messages. It is not
currently specified by the CDAP reference, but a potential way
to guard against fabricated release messages would be to use
the invokelD to pair release messages with connect messages.

When responding to a release request, care should be taken
not to divulge information about the namespace of the DIF
or allow an attacker to map out what connections are active.
For example, if a request to release a connection that is not
active or was never started, responding with a success status
would prevent an attacker from learning what connections are
active. This is especially true when the AP or AE names are
malformed.

Data flow 3: Create and Create_R: Aside from verifying
that the requester is authorized to create the specified object(s),
the IPC process servicing this request should take care to
validate the scope and filter values to be sure that the caller
is not able to elevate their privilege via this mechanism. If an
object value is specified in the message, this should also be
validated against the class to be sure the value is appropriate.
The size of the value should also be validated to fit within the
allocated space.

When sending the response for this request care should be
taken to limit the amount of information divulged to the caller
especially if the object to be created would not be authorized
for the given caller.

Data flow 4: Delete and Delete_R: Delete and Delete_R
have similar processing concerns to Create and Create_R.
Except that since no object values are provided, validation
of that field is not required.

Data flow 5: Read and Read_R: Read and Read_R have
similar concerns to Delete and Delete_R.

Data flow 6: Cancel Read and Cancel Read_R: Cancel
Read and Cancel Read_R have similar processing concerns
to Release and Release_R except that in this case there is an
additional way to validate the request. The pair of invokeID
and object instance ID must match an existing read request in

progress.

Also like Release_R, care should be taken to limit the
amount of information divulged via error messages for errant
or fabricated Cancel Read requests.

Data flow 7: Write and Write_R: Write and Write_R have
similar processing concerns to Create and Create_R.

Data flow 8: Start and Start_R: Start and Start_R have
similar processing concerns to Create and Create_R, although
some additional care should be taken to not allow an attacker
to determine which objects have operational states.

Data flow 9: Stop and Stop_R: Start and Start_R have
similar processing concerns to Start and Start_R.

2) Local Host = World: Now we will turn our attention
to each of the messages from the perspective of the local host
sending request messages to other DIF processes.

Data flow 10: Connect and Connect_R: The information
of interest to an attacker in this message includes the desti-
nation AE and destination AP names as well as the names
of the source AE and AP. If included, the instance names are
also of value. All of these values combined, especially when
combined with data from other nodes, may allow an attacker
to derive the DIF namespace or at least a portion of it. This
would give the attacker an advantage in guessing the address
or name of a specific node in the network other than the ones
specifically named in the intercepted connect message. Also
of interest to an attacker from the Connect message are the
authentication credentials.

The CDAP API itself does not seem to provide a way to
authenticate the destination AP. This would have to be done
externally either by querying an already trusted DIF member
or via an AP specific mechanism (e.g. something similar to
2-way SSL in the TCP/IP architecture).

To protect the information required by this pair of messages,
SDU protection that includes a confidentiality component (e.g.
encryption) should be employed.

Data flow 11: Release and Release_R: From the sender’s
perspective there is not much that can be leaked via a Release
message. Even if a Release_R is never received, all future
traffic from this flow can be ignored. Theoretically if there
is a rogue IPC process between the sender and receiver, it
could potentially (in the absence of proper SDU protection)
take over a connection if say it is on the receiving end of
publish/subscribe conversation and the sender doesn’t first
issue an unsubscribe.

Data flow 12: Create and Create_R: The Create and
Create_R messages contain valuable information. In order to
use the API as intended, the sender must provide the object
class, an object name, and an object instance identifier. It
can optionally provide an initial value for the object. If PDU
protection is not being employed then an attacker may have
direct access to this data. In addition, the filter and scope fields
may reveal even further information about the structure of the
object namespace. Unsolicited Create_R messages should be
flagged as potentially critical events.

Data flow 13: Delete and Delete_R: Delete and Delete_R
have similar concerns to Create and Create_R except that the
values of the objects being deleted are not divulged. Unso-
licited Delete_R messages should be flagged as potentially

critical events.

Data flow 14: Read and Read_R: Read and Read_R have
similar concerns to Create and Create_R.

Data flow 15: Cancel Read and Cancel Read_R: Cancel
Read seems to be the least risky message that can be sent in
CDAP. The message itself contains no critical fields. The only
thing to be cautious of is divulging too much information via
a reason code or message.

Data flow 16: Write and Write_R: Write and Write_R
have almost identical concerns to Create and Create_R.

Data flow 17: Start and Start_R: Start and Start_R
messages have similar concerns to Create and Create_R but in
addition to naming the object and potentially its value, sending
a Start message indicates to an eavesdropper that the object
in question has at least one operational state.

Data flow 18: Stop and Stop_R: Stop and Stop_R have
similar concerns to Start and Start_R.

C. Other methods of obtaining required information

Now that we have explored the RINA API and CDAP
messages, we will examine briefly some additional potential
methods for obtaining enough data to attack a DIF. Most
of these are areas for further study. In the absence of a
confidentiality component included in the PDU protection
policy, it seems feasible that any node in a lower level DIF
shared with a target may eavesdrop on the PDUs it sends. If
the target also does not employ authentication against the APs
it connects with, then this seems to open up that target to man
in the middle or masquerading attacks. If an attacker is able
to get access to a RIB out of band or gain access to it via
the API, they will have a treasure trove of data with which to
launch targeted attacks against any DIF member who’s data is
stored even partially in the compromised data store.

VI. ATTACK MITIGATIONS

In this section we will discuss mitigations to the attacks and
data leakage explored in previous sections. There are four ma-
jor mitigations that can be employed to strengthen a RINA net-
work: 2-way authentication, PDU encryption, PDU integrity
protection, and strong auditing. This seems uninteresting at
first, but upon further reflection indicates that the standard
security tools: Authentication, Authorization, Confidentiality,
Integrity Protection, and Auditing are sufficient to secure a
RINA network.

VII. S0, 1S A DIF A SECURABLE CONTAINER?

Now it is time to pull everything together and revisit our
starting question: Is a DIF a securable container? In short,
yes. While we recognize that this analysis is limited by its
reliance upon an implementation constructed using secure
coding practices, the architecture itself does not introduce new
security flaws. When proper security tools are used, a DIF
is a “structure used to hold or transport something that can
be made to be not subject to threat” As we have shown,
given a properly implemented transport protocol, when SDU
protection includes a confidentiality component, all critical
data that is otherwise available for capture becomes opaque. If

in addition to this, communicating APs mutually authenticate,
attackers have little opportunity to obtain enough information
to launch successful attacks against specific, random, or col-
lective DIF targets. A RINA DIF is a securable container as
we have defined it.

Some areas for further study include: a threat analysis of
EFCP the proposed suite of transport protocols for RINA, a
threat analysis of additional trust boundaries within a DIF
such as when a subset of DIF members are trusted more
than others!?, attacks on DIF traffic as it passes through lower
level DIFs, and other out-of-band methods for obtaining data
from the RIB such as reading the data directly from long term
storage.

REFERENCES

[1]1 John Day Patterns in Network Architecture: A Return to Fundamentals.
Upper Saddle River, N.J. : Pearson Education, c2008.

[2] J. Day, I. Matta, and K. Mattar, ”Networking is IPC”: A Guiding Prin-
cipal to a Better Internet. in Proccedings of Rearch’08 - Re-Architecting
the Internet Madrid, SPAIN: Co-located with ACM CoNEXT 2008,
December 2008.

[3] G. Boddapati, J. Day, I. Matta, and L. Chitkushev Assessing the Security
of a Clean-Slate Internet Architecture Boston, Massachusetts, May 2010.

[4] New Oxford American Dictionary 2nd edition 2005 by Oxford Univer-
sity Press, Inc.

[5] S. Bunch CDAP - Common Distributed Application Protocol Reference.
Unpublished, December 2010.

[6] J. Day Patterns in Network Architecture: Recursive IPC Network
Architecture: The Reference Model: Basic Concepts and Distributed
Applications. Unpublished, 2009.

[71 1. Day Patterns in Network Architecture: Recursive IPC Network Archi-
tecture: The Reference Model: Distributed InterProcess Communication.
Unpublished, 2009.

[8] J. Day Patterns in Network Architecture: Recursive IPC Network Archi-
tecture: The Reference Model: Operations. Unpublished, 2009.

[9] J. Day Patterns in Network Architecture: Recursive IPC Network Archi-
tecture: The Reference Model: Interesting Configurations. Unpublished,
2010.

[10] Dieter Gollmann Computer Security, 2nd Edition. San Francisco, CA :
John Wiley & Sons 2006.

12Such as in a service provider peering DIF.

VIII. ADDITIONAL FIGURES

GPB name

LOANNOD N

A LOANNOD W

HASVATIY N

A ASVATIY W

HLVAED N

A ALVadID W

JLA7dd W

A 41979d W

avad W

A avad W

AVAITIONVD W

A AVAITAONVD W

LM W

A ALEM N

LIVLS N

A LAVLIS N

dOLS W

¥ dOLS N

absSyntax

authMech

authValue

destAEInst

destAEName

destAplnst

destApName

z >z > >z
<l>l<|> x>z

filter

flags

@

@

@

@

invokelD

Z|0

>0

objClass

> Q>

<l o<

<l o<

<l o<

objlnst

objName

objValue

opCode

<

z|>|z|z|> > 0>

z| |z|z[>[> 0>

z| |z|z[>[> 0>

<L

ZPIZIRIRPIO

ZPIZIRIRRIO>

resultReason

result

0L

ZOZ > <|<l<] I al<

z|lalz| [<|<|<|1|al<

z|lalz|al<|<|<| I al<

0L
0L

QP>

QP>

LK<

scope

>

>

>

>

>

srcAEInst

srcAEName

srcAplInst

srcApName

version

SIZPZIEP

zl<|»|<|>| [z|0|z

Fig. 3.

CDAP Message Detail [5]

